150 mm Manual Probe System

> Overview

The MPS150 is an easy to use, yet highly-precise manual probe platform for wafers and substrates up to 150 mm. It supports a wide variety of applications and accessories. The modular and flexible design allows to configure and individualize the system to match application requirements. With the System Integration for Measurement Accuracy (SIGMA™) kit, MPS150 can be seamlessly integrated with third-party instrumentation, ensuring the shortest signal path.

Combining the MPS150 probe system with our measurement expertise, FormFactor provides pre-configured application-focused probing solutions for a variety of applications, and an integrated measurement solution for accurate S-parameter measurements, which include everything you need to achieve accurate measurement results in the shortest time, with maximum confidence.

> Features / Benefits

Flexibility	 Ideal for a wide range of applications such as RF, mm-Wave and sub-THz characterization, FA, DWC, MEMS, optoelectronic tests and WLR Re-configurable and upgradable as requirements grow Minimizes setup times with no loss in performance or accuracy Seamless integration of various measurement instruments
Stability	 Compact and rigid mechanical design Built-in vibration-isolation solution for superior vibration attenuation Highly accurate measurement results Incorporates best-known methods
Ease of use	 Ergonomic and straightforward design for comfortable and easy operation Quick and ergonomic change of DUT through pull-out stage Fast time to data

> Mechanical Performance

Chuck Stage

Travel	155 mm x 155 mm (6 in. x 6 in.)
Resolution	5 μm
Planarity over 150 mm (6 inch)	< 10 μm
Load stroke, Y axis	90 mm
Z height adjustment range	10 mm
Z contact / separation / load stroke	0-3 mm adjustable
Theta travel (standard)	360°
Theta travel (fine)	± 8°
Theta resolution	7.5 x 10 ⁻³ gradient

Manual Microscope Stage (On Bridge)

Travel range	50 mm x 50 mm (2 in. x 2 in.) / 150 mm x 100 mm (6 in. x 4 in)	
Resolution	\leq 5 μ m (0.2 mils)	
Scope lift	Manual, tilt-back or linear pneumatic	

Programmable Microscope Stage*

Travel range	50 mm x 50 mm (2 in. x 2 in.)
Resolution	0.25 μm (0.01 mils)
Scope lift	Programmable 130 mm

Electronics box for manual systems (P/N 157-137) required

> Platen System

Platen

Platen space (typical)	Universal platen: space for up to four DPP2xx/DPP3xx/DPP4xx/RPP210 or up to twelve DPP105 positioners	
	Universal platen with optional probe card adapter: space for up to eight DPP2xx/DPP3xx/DPP4xx/RPP210 or up to sixteen DPP105 positioners	
	MMW platen: space for up to four RPP305 or two LAP positioners	
Z-Height adjustment range	Maximum 40 mm (depending on configuration)	
Minimum platen-to-chuck height	16 mm (universal platen)	
Separation lift	200 μm	
Separation repeatability	<1 µm	
Vertical rigidity / force	5 μm / 10 N (0.2 mils / 2.2 lb.)	
Accessory mounting options	Universal platen: magnetic, vacuum	
	RF-platen: bolt-down, magnetic	

2 MPS150

> Wafer Chuck

Standard Wafer Chuck

Diameter	150 mm
Material	Stainless steel
DUT sizes supported	Shards or wafers 25 mm (1 in.) through 150 mm (6 in.)
Vacuum ring diameter	Universal: 4 mm, 7 mm, 22 mm, 42 mm, 66 mm, 88 mm, 110 mm, 132 mm
	Standard: 22 mm, 42 mm, 66 mm, 88 mm, 110 mm, 132 mm
Vacuum ring actuation	Universal: all connected in meander, center hole 1.5 mm diameter
	Standard: mechanically selected, center hole 1.0 mm diameter
Chuck surface	Planar with centric-engraved vacuum grooves
Surface planarity	≤±3 μm
Rigidity	< 15 µm / 10 N @ edge

RF Wafer Chuck

Diameter	150 mm with two additional AUX chucks	
Material	Stainless steel with HF/OPTO surface (flat with 0.7 mm holes)	
DUT sizes supported	Main: single DUTs down to 3 mm x 5 mm size or wafers 25 mm (1 inch) through 150 mm (6 inch)	
	AUX: up to 18 mm x 26 mm (1 in. x 0.7 inch) each	
Vacuum hole sections (diameter)	22 mm, 42 mm, 66 mm, 88 mm, 110 mm, 132 mm (four holes in center with 2.5 mm x 4.3 mm distance)	
Vacuum hole actuation	Mechanically selected	
Chuck surface	Planar with 0.7 mm diameter holes in centric sections	
Surface planarity	≤±3 μm	
Rigidity	< 15 μm / 10 N @ edge	

Triax Wafer Chuck

Diameter	150 mm with three additional AUX chucks (two with vacuum fixation)	
Material	Stainless steel	
DUT sizes supported	Main: wafers 50 mm through 150 mm	
	AUX: up to 18 mm x 26 mm (1 inch x 0.7 inch) each	
Vacuum hole sections (diameter)	50 mm, 100 mm, 150 mm (2 inch, 4 inch, 6 inch)	
Vacuum hole actuation	3x vacuum switch unit	
Chuck surface	Planar with 0.4 mm diameter holes in centric sections	
Surface planarity	≤ ±5 μm	

> Non-Thermal Chucks

Note: Results measured with non-thermal chuck at standard probing height (10,000 μ m) with chuck in a dry environment. Moisture in the chuck may degrade performance.

MPS-CHUCK150-COAX

Operation voltage	Standard: in accordance with EC 61010, certificates for higher voltages available upon request	
Isolation*	> 2 GΩ	
Capacitance	100 pF	

3

MPS150

^{*} Factory test with multimeter with maximum 2 $G\Omega$ range.

> Non-Thermal Chucks (continued)

MPS-CHUCK150-RF

Operation voltage	Standard: in accordance with EC 61010, certificates for higher voltages available upon request	
Isolation (Signal-Shield)	> 200 GΩ	
Capacitance (Signal-Shield)	80 pF	

MPS-CHUCK150-TRIAX1

	In Purged Shield Enclosure	Open²	
Humidity ²	< 30%	50%	
Leakage (1 sigma)	< 50 fA	< 200 fA	
Leakage (average)	NA	NA	
Leakage (P-P)	<100 fA	< 1000 fA	
Resistance (F-G)	>1 TΩ	>1 TΩ	
Resistance (G-S)	>1 TΩ	>1 TΩ	
Resistance (F-S)	>1 TΩ	>1 TΩ	
Residual capacitance @ 3 pA Tx	< 20 pF	< 20 pF	
Capacitance @ 300 pA (F-G)	< 400 pF	< 400 pF	
Capacitance @ 300 pA (G-S)	< 400 pF	< 400 pF	

TRIAXIAL PROBE ARMS¹

	Standard Triaxal Arm (PN 100525)	Advanced Triax Option (PN 157-450 and DCP)
	In Purged Shield Enclosure	In Purged Shield Enclosure
Humidity ³	< 30%	< 30%
Leakage (1 sigma)	< 5 fA	< 2 fA
Resistance (F-G)	> 20 TΩ	> 50 TΩ
Resistance (G-S)	> 4 TΩ	NA
Residual capacitance @ 3 pA Tx	<1 pF	< 0.3 fF
Capacitance @ 300 pA (F-G)	< 300 pF	<150 pF
Capacitance @ 300 pA (G-S)	< 400 pF	< 200 pF

COAXIAL PROBE ARMS¹

	Coaxial Probe Arm (PN 100561)	
	Open / Ambient ^{2,4}	
Resistance (Signal-Shield)	> 20 TΩ	
Capacitance (Signal-Shield)	< 200 pF	

^{1.} Test conditions: B1500 with SMU B1517, triax test cables and adapter ground unit (104-337). Resistor test setup: 10 V HR Mode PCL Factor 15. Capacitor test setup: 3 pA / 300 pA HR Mode PCL Factor 4. Leakage test setup: 10 V HR Mode PCL Factor 40.

- 2. Depending on DC-/AC-noise environment.
- 3. Environment data (not specification data).
- 4. Depending on humidity.

MPS150 4

> Thermal Chuck Performance

Note: For details on facility requirements, refer to the Facility Planning Guide for your thermal system.

MPS-TC150-CTX-300C1

		Triax @ 30°C	Triax @ 200°C	Triax @ 300°C
Breakdown voltage ^{2a}	Force-to-guard	≥ 500 V	≥ 500 V	≥ 500 V
	Guard-to-shield	≥ 500 V	≥ 500 V	≥ 500 V
	Force-to-shield	≥ 500 V	≥ 500 V	≥ 500 V
Resistance ^{3a}	Force-to-guard	$\geq 1 \times 10^{12}$	$\geq 1 \times 10^{11}$	≥ 5 x 10 ⁹
	Guard-to-shield	$\geq 1 \times 10^{11}$	≥ 1 x 10 ¹⁰	≥ 1 x 10 ⁹
	Force-to-shield	≥ 5 x 10 ¹²	≥ 2 x 10 ¹¹	≥ 5 x 10 ⁹
Chuck leakage ⁴		≤ 100 fA	≤10 pA	≤ 300 pA
Residual capacitance		≤ 50 pF		
Settling time ⁶ @ 10 V 50 fA	Α	500 ms (typical)		

MPS-TC150-CTX-300C (using coax-triax adapter)^{1, 5}

		Coax @ 30°C	Coax @ 200°C	Coax @ 300°C	
Breakdown voltage ^{2a}		≥ 500 V	≥ 500 V	≥ 500 V	
Resistance ^{3a}	Signal-to-shield	≥ 1 x 10 ¹²	≥ 1 x 10 ¹¹	≥ 5 x 10 ⁹	
Chuck leakage ⁴		≤ 600 fA	≤ 15 pA	≤1 nA	
Residual capacitance		≤ 600 pF			

MPS-TC150-RF-300C1,5

		Coax @ 30°C	Coax @ 200°C	Coax @ 300°C
Breakdown voltage ^{2a}		≥ 500 V	≥ 500 V	≥ 500 V
Resistance ^{3a}	Signal-to-shield	$\geq 1 \times 10^{12}$	≥ 1 x 10 ¹¹	≥ 5 x 10 ⁹
Chuck leakage ⁴		≤ 600 fA	≤15 pA	≤1nA
Residual capacitance		≤ 600 pF		

MPS-TC150-200C1

		Triax @ 30°C	Triax @ 200°C	
Breakdown voltage ^{2b}	Force-to-guard	≥ 500 V	≥ 500 V	
	Guard-to-shield	≥ 500 V	≥ 500 V	
	Force-to-shield	≥ 500 V	≥ 500 V	
Resistance ^{3b}	Force-to-guard	≥ 5 x 10 ¹²	≥ 5 x 10 ¹¹	
	Guard-to-shield	≥ 2 x 10 ¹²	≥ 8 x 10 ¹⁰	
	Force-to-shield	≥ 7 x 10 ¹²	≥ 5 x 10 ¹¹	
Chuck leakage ⁴		≤ 35 fA	≤ 40 fA	
Residual capacitance ⁶		≤20 pF		
Settling time ⁷ @ 10 V 50 f/	A	500 ms (typical)		

5

MPS150

> Thermal Chuck Performance (continued)

MPS-TC150-200C (using coax-triax adapter)^{1,5}

		Coax @ 30°C	Coax @ 200°C	
Breakdown voltage ^{2b}		≥ 500 V	≥ 500 V	
Resistance ^{3b}	Signal-to-shield	$\geq 5 \times 10^{12}$	≥ 5 x 10 ¹¹	
Chuck leakage ⁴		≤ 600 fA	≤ 7.5 pA	
Residual capacitance ⁶		≤ 600 pF		

- 1. Performance values determined using EMV shielded chamber. Actual value depend on electromagnatic surrounding and shielding situation of the probe station.
- 2a. For fully-baked chuck: 90°C for 60 minutes + 200°C for 240 minutes + 300°C for 480 minutes.
- 2b. For fully-baked chuck: 90°C for 60 minutes + 200°C for 800 minutes
- 3a. For fully-baked chuck: 90°C for 60 minutes + 200°C for 240 minutes + 300°C for 480 minutes; controller on; 21-23C° environment with ≤ 50% humidity.
- 3b. For fully-baked chuck: 90° C for 60 minutes + 200° C for 800 minutes; 21-23C° environment with $\leq 50\%$ humidity.
- 4. Overall leakage current is comprised of two separate components: 1) offset, and 2) noise. Offset is the DC value of current due to instrument voltage offset driving through isolation resistance. Noise is low frequency ripple superimposed on top of offset and is due to disturbances in the probe station environment
 - Noise and leakage are measured with B1500 with SMUB1517 DCN@10V CMI program or equivalent. This value specifies standard deviation (1a).
- 5. Chuck: Guard-Shield shorted, B1500: triax, guard open.
- 6. Depends on test environment
- 7. Settling time is measured with B1500 with SMUB1517 ST@10V CMI program or equivalent

Transition Time

		Heating			Cooling	
	30°C to 100°C°	100°C to 200°C	200°C to 300°C	300°C to 200°C	200°C to 100°C	100°C to 30°C
MPS-TC150-CTX-300C	145 sec	155 sec	300 sec	145 sec	245 sec	1525 sec
MPS-TC150-RF-300C	180 sec	300 sec	540 sec	165 sec	310 sec	1650 sec
MPS-TC150-200C	155 sec	260 sec	na	na	120 sec	425 sec

MPS-TC150-CTX-300C and MPS-TC150-RF-300C Specifications

Temperature range	+ 30°C to 300°C
Temperature accuracy	± 0.1°C (with calibrated controller)
Temperature resolution	0.1°C
Temperature uniformity	≤ 0.5°C @ 30°C, ≤ 3.0°C @ 300°C
Chuck flatness	≤ 30 µm (0.12 mils) @ +30°C to 300°C
Audible noise	< 58 dB(A) (normal operation); < 79 dB(A) (max. cooling mode)

MPS-TC150-200C

Temperature range	+ 30°C to 200°C	
Temperature accuracy	± 0.5°C	
Temperature resolution	0.1°C	
Temperature uniformity	≤±1°C (30°C - 200°C)	
Chuck flatness	≤ 30 µm (0.12 mils) @ +30°C to 200°C	
Audible noise	< 54 dB(A) (normal operation); < 68 dB(A) (max. cooling mode)	

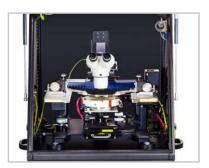
MPS150 6

> Ordering Information

Pre-Configured Application-Focused Packages

EPS150 COAX / COAXPLUS

EPS150TRIAX


EPS150RF

EPS150MMW

EPS150FA

EPS150TESLA

Integrated Measurement Solution

RFgenius

Part Number	Description	
EPS150COAX	150 mm manual probing solution for DC parametric test	
EPS150COAXPLUS	50 mm manual probing solution for DC parametric test (including platen lift)	
EPS150TRIAX	0 mm manual probing solution for low-noise measurements	
EPS150RF	150 mm manual probing solution for RF applications	
EPS150MMW	150 mm manual probing solution for mmW, THz and load pull applications	
EPS150FA	150 mm manual probing solution for failure analysis	
RFgenius-xx*	RFgenius education kit, turn-key solution for measurements up to 4.5/6.5/9/14/20/26.5 GHz	
181-669	FormFactor certified laptop for RFgenius-xx (optional)**	

^{*} Enter the frequency range for a VNA of your choice. Example: RFgenius-4 for 4.5 GHz. RFgenius-26 for 26.5 GHz.

^{**} Minimum requirement for a laptop to be supplied by a user: Windows 7 or 10 (64 bit), Intel i5 6th Gen or newer, 4 GB memory or more (16 GB recommended), 2 GB disk space or more, 1024 x 768 resolution, USB 3.0 port.

> Regulatory Compliance

Certification CE, cNRTLus, CB

> Warranty

Warranty*	Fifteen months from date of delivery or twelve months from date of installation
Service contracts	Single and multi-year programs available to suit your needs

8

© Copyright 2018 FormFactor, Inc. All rights reserved. FormFactor and the FormFactor logo are trademarks of FormFactor, Inc. All other trademarks are the property of their respective owners.

All information is subject to change without notice.

MPS150-DS-0518

Corporate Headquarters

7005 Southfront Road Livermore, CA 94551 Phone: 925-290-4000 www.formfactor.com

^{*} See FormFactor's Terms and Conditions of Sale for more details.